语言维基:人工智能技術研發公告

From 语言维基
Jump to: navigation, search

本站研發團隊在人工智能、深度學習、自然語言處理等領域,進行廣泛的前沿創新研究。部分研究處於世界領先水平,您可以在此了解部分項目的研發進展。您也可以與我們聯繫,諮詢部分技術詳細資料、合作和授權。

  • 語言處理方面的基礎算法研發
    • RNN和LSTM的升級和優化。我們掌握的深度學習模型與技術,優於現有biLSTM、注意力機制LSTM、Transformer等。語音識別、機器翻譯應用潛能,優於百度、谷歌、訊飛的現有系統。
    • 研發下一代可解釋AI核心技術
  • 世界首創頂尖語義學習算法研究
    • 優於目前計算語言學領域的語法分析、語義嵌入(word embedding)、GPT-3等前沿方法。研發出下一代的語義學習算法,可以更高效、穩定的處理自然語言語義。可以賦能機器人對話、自動翻譯、自動問題回答、商業諮詢等領域。
    • 包含豐富的模糊語義邏輯能力,可進行自然語言和世界知識級別的邏輯推理
  • NLP技術開發和應用
    • 小語種語音、文字識別。運用最前沿技術,填補小語種處理的空白。正在研發滿文文字識別(OCR)、滿語和維吾爾語機器翻譯、語音合成與識別等。
    • 漢字識別新算法
      • 正在研發優於CNN的漢字識別算法,取代第一代深度學習技術。

技術估值

  • 目前處於初創階段。預期5年內估值目標價:1億-100億美金(對標百度、谷歌)。跨代技術可以取代現有語言處理類技術領航者,搜索引擎、對話系統等。

2021年語言維基人工智能/機器學習基礎算法 [edit | edit source]

技術項目 基礎研究 應用研究 研究階段 性能 性能預期 公布日期 對外授權
TrueNorm 概念驗證通過 專家組通過 歸一化(normalization)算法,取代並超越 LayerNorm 和 BatchNorm 3/1/2021 基礎研究不授權,應用可授權
TrueNB 概念驗證通過 專家組通過 大幅提升各種計算機視覺、自然語言任務表現 5/1/2021 基礎研究不授權,應用可授權
TrueNTM 概念驗證通過 專家組通過 自研技術對標谷歌 Neural Turing Machine 6/1/2021 基礎研究不授權,應用可授權
TrueRNN: G2P 優化完成 高難度數據超過Transformer 超越 SOTA, Transformer 9/14/2021 基礎研究不授權,應用可授權
TrueRNN: OCR 概念驗證通過 基準數據表現優異 超越 SOTA 9/25/2021 基礎研究不授權,應用可授權
TrueRNN: ASR 概念驗證通過 SOTA 超越 SOTA 10/3/2021 基礎研究不授權,應用可授權
CuteNLU 開發中 SOTA 超越 SOTA 可商業非商業授權
TrueSemantics 理論研究完成 語義相關任務(機器翻譯、意圖理解、問題回答)超越 LSA, BERT, GPT-3,實現通用人工智能的語義基礎
NeoConvNet 正在進行 遠超所有CNN變體SOTA,展示計算機視覺的最佳實踐和精度 11/28/2021 基礎研究不授權,應用可授權
多模態語義推理機 正在進行 以正確的途徑實現通用人工智能,超越 OpenCOG, OpenNARS 等框架
神經計算機ASIC設計 正在進行 保護人工智能算法產權、加速邊緣計算、減少神經計算機能耗

TrueRNN: 以 RNN, LSTM, GRU 為基礎的新一代序列學習、預測、轉換模型,在語音識別、語音合成、語言文本處理(陌生詞發音、機器翻譯、語言理解)等領域,通過對於特定領域數學模型的研發和創新,進一步提升當前 SOTA 性能。

NeoConvNet: 修正 ConvNet 自1980年 Fukushima 的原型以及 LeCun 的CNN一直存在的瓶頸,成為下一代深度學習視覺的主幹。

多模態語義推理機:具有符號運算模態和神經運算模態的計算機,同時處理多個信息輸入模態(視覺、語音、語義)等,同時具有傳統計算機優勢、神經計算機的學習和通用智能推理能力。